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ABSTRACT 

Work-related upper extremity musculoskeletal disorders (WRUED) are a major problem in modern societies 
as they affect the quality of life of workers and lead to absenteeism and productivity loss. According to studies 
performed in North America and Western Europe, their prevalence has increased in the last few decades. 
This challenge calls for improvements in prevention methods. One avenue is through the development of 
wearable sensor systems to analyze worker’s movements and provide feedback to workers and/or clinicians. 
Such systems could decrease the physical work demands and ultimately prevent musculoskeletal disorders. 
This paper presents the development and validation of a data fusion algorithm for inertial measurement units 
to analyze worker’s arm elevation. The algorithm was implemented on two commercial sensor systems 
(Actigraph GT9X and LSM9DS1) and results were compared with the data fusion results from a validated 
commercial sensor (XSens MVN system). Cross-correlation analyses [r], root-mean-square error (RMSE) and 
average absolute error of estimate were used to establish the construct validity of the algorithm. Five subjects 
each performed ten different arm elevation tasks. The results show that the algorithm is valid to evaluate 
shoulder movements with high correlations between the results of the two different sensors and the 
commercial sensor (0.900-0.998) and relatively low RMSE value for the ten tasks (1.66-11.24°). The proposed 
data fusion algorithm could thus be used to estimate arm elevation. 

INTRODUCTION 

Work-related shoulder injuries impact negatively the quality of life of workers and lead to problems of 
absenteeism and loss of productivity [1]. Despite prevention efforts, prevalence of these injuries is increasing 
[2]. Given the importance of this issue, workplace interventions must be improved. Studies have shown that 
multiple factors such as posture, force, amount of repeated movements and range of motion should be taken 
into account in the study of physical effort causing musculoskeletal injuries [3].  

The three principal methods to analyse human motion are: 1) qualitative assessment (observation with naked 
eye by an evaluator), 2) quantitative, fixed camera-based motion capture systems (mainly lab-based), and 3) 
direct, in-the-field quantitative methods using wearable sensors. Despite its accuracy in the laboratory, 
method #2 is too cumbersome to be easily usable in real work environments. On the contrary, wearable 
sensors have the benefit of being usable in any environment, from the laboratory to the workplace. For 
example, inertial measurement units (IMUs) have been shown to be valid tools to assess shoulder movements 
during simple arm elevations as well as during complex lifting tasks [4].  

The main challenge with commercial sensors is that they were developed for research or sports applications, 
but not necessarily for clinical rehabilitation purposes. As such, they provide neither appropriate interfaces nor 
adequate feedback for clinical applications. Furthermore, their architecture is closed which prevents the 
addition of non-proprietary hardware (e.g., vibration motor to alert the user) or to adjust the algorithms for 
rehabilitation needs. Regarding non-commercial solutions, many open-source algorithms can be used to find 
IMUs orientation from raw data and can be implemented on custom devices [5,6]. However, these algorithms 
differ in quality, and have not been validated for neither general nor rehabilitation purposes. 

OJECTIVES 

The long-term aim of this project is therefore to develop a low-cost wearable device using inertial 
measurement units (IMUs) able to analyze shoulder movement and provide feedback to clinicians and 
workers (both offline and in real time), to reduce the risk of musculoskeletal injuries. The specific objectives of 
this paper are 1) to develop an IMU data fusion algorithm to estimate the shoulder elevation and 2) validate 
the latter, when implemented on two different low-cost sensors (Actigraph GT9X and LSM9DS1), by 
comparing it to the elevation angle obtained with the data fusion algorithm of a validated commercial sensor 
system (XSens MVN).   



 

 

METHODS : DATA FUSION ALGORITHM  

Arm orientation can be described by three angles: plane of elevation, segment elevation and internal/external 
rotation. In this paper, we are mainly interested by segment elevation as it is the principal indicator related to 
the development of musculoskeletal disorders. Furthermore, while arm elevation can be obtained solely from 
IMU’s accelerometer and gyroscope data, the plane of elevation and the rotation require additional information 
from a magnetometer, which is known to lack robustness due to its sensitivity to local magnetic disturbances. 
The proposed algorithm’s inputs are the IMU 3-axis accelerations and angular velocities while the output is 
arm elevation. At first, a static calibration is performed where the user’s arm remains still. The sensor’s 
orientation at rest is thus obtained by using the acceleration ratio between each axis1. This static calibration 
phase is also used to calibrate the gyroscopes, which are known to be naturally drifting. To this end, the mean 
velocity is acquired for all three axes during the calibration and subtracted from the gyroscope’s data at each 
further iteration. Then, the raw data (from the accelerometer and gyroscope) is acquired and processed to 
estimate arm elevation at each time step. The process is shown in Figure 1. 

 
Figure 1. Data fusion algorithm enabling to obtain the arm elevation based on the accelerometer 
and gyroscope data. 

Accelerations are passed trough a low-pass filter (order 1 at 50Hz) to reduce high-frequency noise, while 
angular velocities from the gyroscope are passed trough a band-pass filter (order 1 between 0.002Hz and 
50Hz) to reduce high-frequency noise and minimize drifting. The ratios between each component (X,Y,Z) of 
the acceleration are used to estimate the sensor’s rotation matrix at each time step1. The sensor’s rotation 
matrix is also independently updated from the last know orientation by integrating the resultant angular 
velocity vector obtained from the three axis of the gyroscopes. As the accelerometer does not provide 
information on sensor orientation perpendicular to gravity (around the world Z axis), both orientation matrices 
(obtained independently from the accelerometer and from the gyroscope) are decomposed into two matrices, 
namely one for the world XY rotations and another for rotations along the world Z axis, for a total of four 
matrices. Both XY rotation matrices are then transformed into quaternions to avoid representation 
singularities. From that representation, both quaternions are combined using spherical linear interpolation 
(Slerp) and transformed into a rotation matrix. The latter rotation matrix is then multiplied with the world Z axis 
rotation matrix obtained from the gyroscope’s update to obtain the final rotation matrix. Finally, arm elevation 
is found by transforming the rotation matrix into tilt and torsion angles [7]. 

METHODS : VALIDATION 

Five healthy adults with no self-reported musculoskeletal conditions (i.e. pain or movement limitations) took 
part in one testing session (1 woman and 4 men, right-handed, 23-44 years old). Right shoulder movements 
were recorded simultaneously by three IMUs (XSens MVN, ActiGraph GT9X and LSM9DS1) positioned on the 
lateral aspect of the right arm, at its distal end (Figure 2a). The LSM9DS1 data was acquired thanks to an 
ATMEL ARM Cortex m7 microcontroller through i2c communication. The IMUs were attached with hook and 
loop straps around the arms and positioned on a Lycra suit for the trunk, in accordance with the sensors’ 

 
1 https://arduino.onepamop.com/wp-content/uploads/2016/03/AN3461.pdf  



configuration recommended by Xsens. For the Xsens MVN IMUs, raw data are internally obtained at 1000 Hz 
and segmentelevation are provided at 100 Hz with MT Manager software version 4.6. For the ActiGraph GT9X 
and LSM9DS1 sensors, the raw data were obtained respectively at 100 Hz and 500 Hz, and the segment 
elevation was obtained with the proposed data fusion algorithm. 

The validation session began with an anatomical pose (participant standing straight and looking forward, arms 
along body side, palms facing the thighs) to calibrate the three systems. The protocol consisted of 10 tasks, 
which were each performed five times by participants: 1) shoulder flexion at 1Hz, 2) shoulder external rotation 
at 90° elbow flexion (1 Hz), 3) shoulder flexion at 3Hz, 4) shoulder abduction at 1Hz, 5) shoulder external 
rotation at 90° abduction (1 Hz), 6) shoulder abduction at 3 Hz, 7) trunk flexion with static arm elevation 
(Figure 2b), 8-9) five “Z” movements on the frame of a mirror (Figure 2c) (clockwise and counterclockwise), 
10) nine ball throws at 90° shoulder abduction (target distance of 2.85 m; Figure 2d). Movement frequency 
was maintained using a metronome.  
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Figure 2. Figure 2a represents the positioning of the sensors. Figure 2b represents the trunk flexion 
task with static 90° arm flexion. Figure 2c represents the Z movement task. Figure 2d represents the 
ball throwing task. 

Statistical analysis. Cross-correlation analyses [r] were performed on arm elevation for XSens MVN vs 
LSM9DS1 and XSens MVN vs GT9X data to establish the convergent construct validity. Arm elevation errors 
(XSens MVN vs LSM9DS1 and XSens MVN vs GT9X) were compared for each task using root-mean-square 
error calculation (RMSE) and average absolute error of estimate.  
 
RESULTS 
Figure 3 presents arm elevation for tasks 1 to 10 for a representative participant. Table 1 presents cross-
correlation analyses (tasks 2,5,7 are not presented as arm elevation remained quasi-static), RMSE and 
average absolute error of estimate. The correlation coefficients (r) were excellent for GT9X (0.900-0.998) and 
LSM9DS1 (0.900-0.998) for tasks 1 to 9 but were lower with GT9X (0.894) for task 10. LSM9DS1 showed 
lower RMSE and average absolute error of estimate (RMSE = 1.66-11.24°; absolute error of estimate = 1.23-
7.50°).  



 
Figure 3. Comparison of the arm elevation obtained with the proposed data fusion algorithm (with 
LSM9DS1 and GT9X) compared to the arm elevation provided with a XSens MVN system. 

 

Table 1 - Correlation coefficient, root-mean-square error, average absolute error of estimate. 

Task  r_GT9X 
(Mean[SD]) 

r_LSM 
(Mean[SD]) 

RMSE_GT9X 
(Mean[SD])(°) 

RMSE_LSM 
(Mean[SD])(°) 

Averrage Error 
Estimate_GT9X 
(Mean[SD])(°) 

Averrage Error 
Estimate_LSM 
(Mean[SD])(°) 

1- Flexion (1 Hz) 0,986[0,027] 0,998[0,001] 4,47[2,67] 2,91[0,54] 3,61[1,68] 2,47[0,46] 
2- Ext. rotation at 90° flexion (1 Hz) NA NA 2,20[1,79] 1,66[0,62] 1,86[1,79] 1,23[0,53] 
3- Flexion (3 Hz) 0,964[0,042] 0,973[0,032] 9,95[4,27] 9,25[4,65] 7,73[3,39] 7,18[3,61] 
4- Abduction (1 Hz) 0,998[0,001] 0,998[0,000] 3,05[1,11] 2,37[0,55] 2,48[0,93] 1,75[0,43] 
5- Ext. rotation at 90° abduct (1 Hz) NA NA 2,13[1,49] 1,87[0,70] 1,87[1,54] 1,59[0,69] 
6- Abduction (3 Hz) 0,982[0,011] 0,988[0,009] 7,44[1,36] 6,23[1,68] 5,47[0,88] 4,50[1,06] 
7- Trunk flexion, static arm flexion NA NA 3,74[2,12] 2,91[1,03] 3,18[2,05] 2,33[0,86] 
8- “Z” movements clockwise 0,996[0,003] 0,993[0,005] 3,37[1,51] 3,62[1,30] 2,78[1,26] 2,93[1,14] 
9-“Z” movements counterclockwise 0,995[0,002] 0,995[0,003] 3,88[2,27] 3,70[1,33] 3,25[2,13] 3,12[1,18] 
10- Ball throws 0,894[0,052] 0,900[0,045] 11,25[1,73] 11,24[1,85] 8,00[1,39] 7,50[1,03] 

 

DISCUSSION AND CONCLUSION 

The objectives of this project were to: 1) develop an IMU data fusion algorithm to estimate shoulder elevation 
and 2) validate it, when implemented on two different low-cost sensors (Actigraph GT9X and LSM9DS1), by 
comparing it to the elevation angle obtained with the data fusion algorithm of a validated commercial sensor 
system (XSens MVN). The results show a high correlation (r > 0.90) for all tasks and a mean RMSE error 
below 4.6° (1.66-11.24°) for LSM. The proposed data fusion algorithm is thus valid to estimate arm elevation. 
This algorithm yields better results for slower (tasks 1,2,4,5,7,8,9 with a mean RMSE of 2.72° for LSM) than 
for faster movements (tasks 3,6,10 with a mean RMSE of 8.9° for the LSM). The results obtained with the 
LSM9DS1 were better than Actigraph GT9X. While the same data fusion algorithm was used with both 
sensors, the higher sampling rate of LSM9DS1 (500Hz vs 100Hz) could explain these results.   

The long-term objective of this work is to develop a low-cost wearable device using IMUs to analyze shoulder 
movements and provide feedback to clinicians and workers to reduce the risk of musculoskeletal injuries. 
Future work will consist in validating the system in a workplace environment, to miniaturize the system and to 
provide a meaningful data report to clinicians using the arm elevation data obtained throughout a day. 
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